資料7-1 既存ボーリング調査結果

[本編 p. 380, 410 参照]

事業予定地内における既存のボーリング調査の調査地点は図-1に、調査結果は図-2 に示すとおりであり、各調査地点の孔内水位は表-1のとおり、GL-1.8~-1.0m程度であ る。

調査地点	No. 1	No. 2	No.3	No. 4
孔内水位	GL-1.4m	GL-1.8m	GL-1.0m	GL-1.5m

表-1 事業予定地の地下水位

また、事業予定地内における透水係数については、平成14年に土壌汚染対策に先立ち行われた調査で把握されている。調査地点は図-1に、調査結果は図-3に示すとおりであり、 各層の透水係数は、帯水層で1.9×10⁻⁴~2.5×10⁻³ cm/s、シルト層で3.0×10⁻⁶ cm/s である。

図-1 ボーリング調査地点位置

標	標	層	深	桂	±	色	相	相	51	孔内					J.	標	孝貞	ſλ	М	肤				
R	高	厚	度	状	質区		対密	対桐		木位四ノ刺中	深度	10x FT 1 0	m2 ¥8	20 20	打撃回数/貫					N	値			
(m)	(m)	(m)	(m)	図	쓝	ш	度	度	.8	月日	(m)	10	20	30	소 로 (cm)			10	.,	0	30	40	,	0 00
1 2					シルト賞砂	貫获 < 戻	目常に聞い		GL-000005m間、翌年 GL-005m以深、間9主体で、開始5分 を多く見入する GL-100m付近では関係、GL-200m付 近では灰を呈し、高級物を図る	(20) 100	1,11 1,65 2,15	1 50	1	1.15	1 50 1 15	1	Ĺ							
3	-1.20	2.70	2.4		シルト用り	精庆	難いて中の		暖秋が主体で、全体に少量の貝殻内 が高る 含水量少ない		1.50 1.15 1.45 4.13	4	4	4 15	17 30 10 35	12 9		7						
5	-100	2.40	5.10		部論	R K	開い		編約が主体 所々、プロック状にシルトを含む 少量の見知作業人 含水量中位		450	2	2	3	7 30	7	L				1			
7					シルト買い	青庆~ 床	中信		税は細一中砂含体 全体に細胞分を進入 含水量少ない (3-73m付近、シルトをレンズ状に 中む		645 215 745	7	6	9	30 30	20 22					+			
8	-6.86	2.30	4.10		0						815. 845 915	4	9	12	25.00 10.00	25 16			1	>		-		
10 11					シルト開始	灰~黄斑	Ф. <u></u>		(A)は中へ細行で、火に近く相応を置 入し金体に超近間である (3、31~-84m間、超近間シルト目 細行官である (3、121~12,2m間、安10~25mm程 の何石の可能と火に広制の五期状件		10.25 10.45 10.45	7	8	10 7	25 30 18	25				\rangle				
12									<u>R</u> f		11.45 12.15 13.45	3	6	6	30 15 30	18 15		1	1		+			
13 14	-11.40	4.50		2	砂黒り粘土			線い	個ねど間な粘土 全体に少量の中~ 線校を選入する 中間性 含水量少 一般で物化によって相色に色調の変 のが見られる		13.15 11.45 14.15	2	3	3.	* 30 11 50		1				t			
15	1.1.01	_130		ø	砂田シル	Ŗ		非常に確	全体に膨終を加入し、不均衡 中間性 含水量シ p4mm程の種を使少量加入		14.45 15.15 15.45	5	5	6	16 30 5	16		1		_	-	_		
16 17	-14.76	1.75	16.2		トリント	相庆~百	101101	0	税は中部を主体とし、全体にの2~1 0mm総の線を狙入する 全体に通知がを多く含み、所々でシ んと見かきしンス別に決む		36.35 36.29 37,35	22	4 25	1	14 50 21	107 71							-	
18 19					シルト開り設	K	の目に開た		回は細一中時で、粒子不均等 会国につルトを並入する 下部に定い中時の意入量が多くなる 含水量少ない		18.15 18.42 19.15 19.32	16 21	20 22	147 7.7	50 27 50 22	56 68							-	
20	-19:01	2.50	20.10 20.40		朝石道心設	R	¢ E		全体にゆ2~10mm間の相石を多く罩 入する 含水量の		20.15	9	9	4	24 30	24				-	1			

図-2(1) ボーリング柱状図【No.1】

標	標	履	潔	柱	±	色	相	相	58	孔内						標	洋耳	ſλ	щ	联				
R	商	庫	度	状	ŋ		対	対		水位(m)	22	10c 円 1	200 10 10 10	との	打撃回数					N	値			
					×		密	梢		ノ測定	度	5	10	20	/ 貫入									
(m)	(m)	(m)	(m)	8	分	и	度	虞	8	月日	(m)	10	20	30	(cm)			10		0	30		 50	60
	1.00	0.20	0.20		81	.R.		-	(#30%-40mm程の存在															
- 1	0.30	0.70	0.90 1.15		確認り	NIK.		-	1007主体 377年27 線〜中砂主体 g10mm程の確認入		1.15	1	1	1	3			-			÷	-	+	
				222						100	147	12			12	1	T							
-				53	2		#		細妙主体 概和時子均等 全体に相称分を多く含む		2.55	'n	16		'n.	2	1							
3				222	十四	1	11.10		ルト国リ新程 廃上駅、部分的にシルト分が密集し		3.15	1	1	1	3	,	1	t			+	-	t	-
4				82	10 10	R	5.		約留シルト状を呈す G.40m付近、貝殻片が少量混入 含水量中~多い		3,45	t	1	ï	3			-			+	_	+	_
	-3.60	3.65	4.00	22					100000000		4.30	11	12		15	1	1							
5		1.00		33	確認り シルト 思り約	権民	離い		細胞生体 全体にφ2mm程の礎を呈 入し、不均等 は入口の付け、自転に見入		5.15	1	,	1	30)				T		T	
6	-4.00	1,00		1111 1111				1	Sa Janita Planary		6.75	1	3	3	3	,	-1	+			÷	-	+	_
7				32							68		5	,	16	1		1						
					2						7.0				30	16			1					
8				26	14	4	2		約は細~中砂で、全体にシルトを選 る 含水量中位		8.13	7	8	10	25 30	25		t		1	t		t	-
9				33	1	^	中位		GL-7.0m代码。		8,45		9	10	27			-		-	-	_	+	
				233							8.45				30	27				1	8			
10			-	:::::							10.15	,	*	*	30	17		Г	1		T			
- 11	-10.10	0.55	11.30		調製	1	ф.		編計主体 010~20mm程のFF編を少		11.15	5	6	\$	2			-	1		+	-	+	_
12	-10.60	0.50	11.80		減り約 砂袋シ	RE	-	28	高型性 含水量中位		11.45		10	13	M	ĩ				-	1			
				33	1410		F	1			12.45	-			30	36					P	7		
13				88							0.15	10	11	16	37 30	37		t			t	X	t	
14				89	2				砂井橋一件砂、全体にシルトを混入		11.45	6		13	27			-			1		+	
				<u>.</u>	F III	E.	1		さた単中位 ゆえ~5mm相応離が混入し、下部に従 い優分が多くなる		14.45	-			30	27								
15				999 1997	1	R	8		GL-14Dm計20、シルトの薄層を接在 する		15,15	-	1		30	27								
16											16.15	10	11	11	12	12		÷			1		÷	-
17	-15.90	5.30	17.30	222							16.45			10	26						[_
					152		÷		秋は縮~相図、不均等 全体に相互、φ10~35mm時の原用線		17.45				30	26				1				
18	-17.25	1.35	18.45	202	08.	R	12		る第六 小老量水会 を呈す対象正		18.15	*	6	10	24 30	24		t		1	t		t	
19				s.	a H			*	Store theme		18.15	5	7	8	20			-	_	1	+	_	+	
				2	5	R		14	全体にお分を多く含み、下部に違い 少なくなり、より細胞になる		11.45		1		30	20			1					
20	-19.25	2.00	20.45		÷			v			25,15	*	*	*	22	22		1		1			1	_
											30.45													

図-2(2) ボーリング柱状図【No.2】

標	標	層	潔	柱	±	色	相	相	51	孔内						標	洋西	ſλ	щ	Ŗ.					
R	*	197	197		ŋ		対	対		水位 (m)	深	100 円	8 B	との	打撃回路				Ĩ	N	値				
~		1	.08.	14	Ø		密	稠		/新定	度	2	10	20 2	私/貫入										
(m)	(m)	(m)	(m)		分	ш	度	度	車	月日	(m)	10	20	30	量 (cm			10			30	40		50	60
	0.92	0,40	0.4		表土	波瓦			G2-0.00~0.06m間、727% G2-0.06~0.15m間、20%+ G2-0.11m以2、購買り接回程	12/15											1				
	-0.28	1.20	1.6		新品	展	10 10		細砂全体 石英粒が多く混入 含水 量多い		1.35	1	ľ	1	30		1	1							
2					2		**				215	1.15	1.		230	2	(t						t	
3				132	F III	1			相印主体 全体に相応分を多く加入 する 中一下部では見続けが加入する		3.15	1	2	1	4	4	1	t			+	-		÷	
4				900 (補助	-	1		含水童中~~ 50、		144	2	2	1	7		1	1	_		_	_		L	
	-3,48	3.20	48				64				445		-		30	7.	1								
5					初期結	-		影	不均衡で不規則に細胞分が現入する 含水量多い		\$.11	20	15		35	2	1	T						Т	
6	-4.58	1.10			9	-	8		MARK ON MINING &/ 81		6.15	1	1	1	3		1	-	-		+	-		-	
7	-6.18	1.00	7.5		ルト質約	権民	に属た		する 発気片を少量混入 所々、シルト増を混入する		8.46 7.15	1	1		2.2	,	1	+			+	-		+	
8	-7.03	0.85	8.3		設土町 辺	相庆	非常に知		編励主体。全体に粘土分を多く混入 含水量中位		7.52 8.75	1	1	1	3	,	L	+	+		+	-		ł	
9				<u>.</u>	確認り シルト 取り時	黄庆	中位		約は第一年初で不可降 会体に細胞分、酸分を見入 構まる15~20mm指の原角線 含水量少		8.47 9.15 9.45	5	5	6	16 30	16		-	ÿ		+			┝	
10	-9.28	0.80	10.6		朝朝	黄辰	中位		細砂素体 全体に細胞分、朝石を多 く温入する 含水量少 朝石はφ2~5mm程、載大道φ10mm	ļ	10.15	2	4	7	1) Ж	13		1			+			t	
11	-9.98	0.70	11.3	2292	確認り シルト 差り秒	積灰	中位		級一中時が主体 全体にφ2~10mm 相の最肉種が混入		12,25	7	6	6	19 30	19			7		÷			÷	
12	-10.38	0.40	11,7		シルト			4	二日 二水田 クリー		11.40	2	2	1	1		-	1			+	-		4	
	-11,48	1,10	12.8		*	-		12	ARE THREE TRADE		12.47		12		32	1			-	-					
13				20	NO.						11.45			-	30	42						-	1		
14					リシルト	R	中位		中へ相対主体 全体に φ2~10mm程 の原列線混入 φ2~8mm程の報石を多く混入する ちを単心したの		14.15	12	15	18	45 30	45		t					7	t	
15	-14.38	2.90	15.7		間に開				array the		15.15	7	6	6	19 30	19		t	/	/	1			t	
16				33	281	10			細砂を主体とし、全体に細粒分を多 く混入する 古水振少		36.15	2	1	4	9			1			÷			÷	
17	-15.88	1.50	17.2	83	開設	R	24		部分的にシルト分密集し、砂質シル ト状を呈す		16.47	2	2	2	6		1	4	_		+	_		4	
	-16.28	0.40	17.6	111.0	利用シ ルト	肠		φ£	高層性 不均衡 含水量少 砂層をレジズ状に鉄石		17.67		12		12	6	5	1	3						
18	-17.58	1.30	18.9	200	朝石豊から	R	中位		編修主体 含大量中位 の2~20mm相応現在を多量に並入 またの15mm相応運動構を含む		18.15		,	10	30	21				-	-	_		T	
19	-18.34	0.80	18.7	222	確認り シルト 首時	ĸ	非常常		機能的主体 ゆ2~15mm程の円確認 入		19.15	15	20	18	30	58		T					1	-	
20	:16.78	8.49	38.2	2222	シルト 塗り起き	医胃	44		細~中粉生体 所々にシルト分を決 み不可時 片間 中間性 含水量少		30.15	4	\$	4	13 30	13		.0	-	-	-	1		F	
					1.10.1	-			and the second		11.45							_	_		_	_		1	_

図-2(3) ボーリング柱状図【No.3】

標	標	深	肠	±	土	色	纪	相	7L	沃料	12			標	術)	1 7	1	試験	精	果	
				n	12			11	内	禄	12	N	100	hist	N (M).	N		9A,	折	48	网
尺 (m)	高 (m)	度 (m)	贷 (m)	記号	名	渊	ग्रीह	n an	水位の	取位置	现都分	值((回)	0 10	10 20	20 1 30	- 14	10	20	30	40	50
-				X	¢٤́	£ #.	有药之胡合大4紫日 了喝去。	2			-						T	T	Ť	T	1
11	2.05	1.60	0.00	00	645 K	t nh	2 #t-10% + 5%A	Boyes	les	2.20	4	3	1	1	1	1	Ŀ		1		- 1
.2-				ø		29.40	S. 全体小功能的作			2.00	-	4		,	1	ł					
3-				.0			當時十二月 金田	5		2.20	i.	5	,		,	1					
4-	i i			P			がまいままれ			1.00		11		4	4)	k		1		
5-	k –			o	PR 6	+ unb	オイオーサックライン	E T		5.00		13			1		1				
6-	6.95	1.50	0.90	0		1000	* 3			4.00		17		4	2						
7-					4		AG-424363	7		2.00	-,	14			J.			1			
8-						1	50474351.C			7.90		15									
9-			nut s		(a		K4.	1		8 80	-,	3.3			1			1	+		
10-					1		2.45802404			9.30	-	5%	12	20	13/8		ŀ			1	V
11-	2			4	\$a 4	7 34F .	PA36083	1		1.00	-	69	13	16	11						
12-	225	1.80	5.30	CENTE I	#16		2. 六九、57月1日	-		1.30		16					ŀ,	-	+	1	
13-	1205	-2.60	- 49	調整	46	- 14 14	凝火型の行じ	1-2-9T		17 30	13	50/10	at	20	34				+	+	
14-						1	あっている 時間			1 00	4	5%	11	150							1
15-	-cec	ce aa	2.5.0		微利人	竹橋 人	2 33 Better 1.	F2 2:		1.00	20	50,	10	n'a							
16-							64-11120	政告		6.00	-	50			1/4						1
17-		•					(1 5 xx 802 40 v			12.73		50/10	0	20	13/2						I
18-							(\$.)		A.00	4	.84								X	1
19-								谢		2.00	2	99								V	
20-	20.20	20.30	5.30		\$A 49	为爱 ,	t			9.30		25	1		1					Δ	
1										10.30		2.1	10	14	11					•	

図-2(4) ボーリング柱状図【No.4】

図-3 透水係数調査結果

[本編 p. 387 参照]

沈砂設備は、「防災調整池等の技術基準(案)」第2編 大規模宅地開発に伴う調整池技術 基準(案)による洪水調整容量の算定に基づき設定した。

V= $(ri-rc/2) \times ti \times f \times A \times 1/360$

ここで、V:必要調節容量

- f:開発後の流出係数
- A: 流域面積(事業予定地の工事区域面積)
- rc:調節池下流の流下能力の値に対応する降雨強度(mm/hr)

=Qpc \times 360/ f /A

Qpc:調整池下流の代表地点における流下能力

⇒港北運河への許容放流量 2.0m³/s (敷地全体)

A, B, C の各区域の許容放流量は工事区域面積で按分。

A 区域: 0.884m³/s、B 区域: 0.802m³/s、C 区域: 0.314m³/s

ti:任意の継続時間(sec)

ri:3587.2/(t^{0.78}+20.475)[1/30 確率降雨強度式:愛知県 HP] 設計堆積土砂量は、150m³/ha/年とした。 資料7-3 ストークスの式(粒子の沈降速度)

[本編 p. 387 参照]

ストークスの式は以下のとおりである。

 $V = g (\rho s - \rho) * d^2 / (18 \mu)$

ここで、V:沈降速度 (cm/s) ρ s:粒子密度=2.65 (g/cm³) :事業予定地における土質試験より ρ:水の密度=1.0 (g/cm³) d:粒子の直径(cm) g:重力加速度=980.7 (cm/s²) μ:水の粘度=0.01 (g/cm・s) 資料7-4 事業予定地の土質試験結果(粒径加積曲線)

[本編 p. 388 参照]

事業予定地の概ね中心であるボーリング調査地点(No.3)における土質試験の粒径加積 曲線によると、粒径 0.075mm 以上が 92.3%を占める。

粒径 (mm)	通過質量百分率(%)
4. 75	100
2.00	99.9
0.85	95.2
0.425	65.7
0.25	29.2
0.106	9.8
0.075	7.7

資料7-5 中川運河(東海橋)における水温と気温の変化

[本編 p. 390, 391 参照]

事業予定地近傍の調査地点(中川運河:東海橋)における平成20年度~平成24年度の 水温及び気温の変化は、図-1に示すとおりである。

出典)「平成 20~24 年度公共用水域及び地下水の水質常時監視結果」(名古屋市ホームページ) を基に作成

図-1 中川運河(東海橋)における水温と気温の変化

資料7-6 港北運河及び中川運河における水温調査結果

[本編 p. 393 参照]

港北運河における水温調査結果は、以下に示すとおりである。

(1) 第1回調査: 平成 25 年 7 月 22 日

				1	港北運河	Î				東海橋	
地点	No	.1	No	. 2	No	. 3	No	. 4	平均		気温
	護岸	中央	護岸	中央	護岸	中央	護岸	中央		中央	
朝	29.0	28.9	29.2	28.8	29.1	29.3	29.2	29.2	29.1	29.3	28.9
昼間	31.6	31.2	31.9	30.8	30.5	30.2	30.4	30.4	30.9	30.7	36.8
夕	31.8	31.7	31.7	31.5	31.0	30.8	30.7	30.7	31.3	30.3	33.4
夜間	30.1	30.1	30.3	30.3	30.2	30.1	30.2	30.0	30.2	29.7	29.7

(2) 第2回調查: 平成25年8月9日

				ì	港北運河	•				東海橋	
地点	No	. 1	No	. 2	No	. 3	No	. 4	平均		気温
	護岸	中央	護岸	中央	護岸	中央	護岸	中央		中央	
朝	30.5	30.6	30.7	30.5	30.6	30.3	30.8	30.4	30.6	30.5	29.0
昼間	32.0	32.4	32.8	31.9	31.5	31.9	32.0	31.7	32.0	31.4	36.9
夕	33.5	33.5	33.8	33.1	33.3	33.1	33.0	33.1	33.3	31.9	37.4
夜間	32.5	32.5	32.6	32.1	32.1	31.8	32.3	32.2	32.3	32.4	32.1

資料7-7 熱源施設の運河水循環による温度差利用に伴う運河水への影響における 予測

[本編 p. 395 参照]

水理解析モデルは、文献(「数値水理学」 岩佐義朗編著 丸善株式会社)を参考に、コン トロールボリューム法による三次元モデルによった。

平面・多層流れ(三次元流れ)の数理モデルは、水表面・中間層・底面の3つのエレメントから構成され、①水の連続式、②密度偏差の式、③水温収支の式、④物質濃度の収支式、⑤運動方程式のx方向分値、⑥運動方程式のy方向分値、からなる。

 Δx , Δy , Δz は 0.2m、 Δt は 1 s とした。

図-1 平面・多層流れのコントロールボリューム

水の連続式

① 水表面エレメントの連続式

$$\frac{1}{\Delta z} \frac{\partial z_s}{\partial t} + \frac{1}{\Delta x} |u|_{s=1}^{s=1} + \frac{1}{\Delta y} |v|_{s=1}^{s=1} - \frac{1}{\Delta z} [w]_{s=1} = 0$$

- ③ 直面エレメントの連続式 $\frac{1}{\Delta x} |u|_{t^{*1}} + \frac{1}{\Delta y} |v|_{t^{*1}} + \frac{1}{\Delta z} [w]_{s+1} - \frac{1}{\Delta z} \frac{\partial z_{b}}{\partial t} = 0$
- (2) 密度偏差の式
 - ① 水表面エレメントの密度偏差式

$$\frac{\partial}{\partial t}(\Delta\rho) + \frac{1}{\Delta x} |\Delta\rho u|_{t}^{t+1} + \frac{1}{\Delta y} |\Delta\rho v|_{t}^{t+1} - \frac{1}{\Delta z} [\Delta\rho w]_{t-1}$$
$$= \frac{1}{\Delta x} \left| K_{h} \frac{\partial}{\partial x} (\Delta\rho) \right|_{t}^{t+1} + \frac{1}{\Delta y} \left| K_{h} \frac{\partial}{\partial y} (\Delta\rho) \right|_{t}^{t+1} + \frac{1}{\Delta z} \left| K_{v} \frac{\partial}{\partial z} (\Delta\rho) \right|_{t}^{t+1}$$

$$\frac{\partial}{\partial t}(\Delta\rho) + \frac{1}{\Delta x} |\Delta\rho u|_{t}^{t+1} + \frac{1}{\Delta y} |\Delta\rho v|_{t}^{t+1} + \frac{1}{\Delta z} |\Delta\rho w|_{t}^{t+1} \\ = \frac{1}{\Delta x} \left| K_{s} \frac{\partial}{\partial x} (\Delta\rho) \right|_{t}^{t+1} + \frac{1}{\Delta y} \left| K_{s} \frac{\partial}{\partial y} (\Delta\rho) \right|_{t}^{t+1} + \frac{1}{\Delta z} \left| K_{v} \frac{\partial}{\partial z} (\Delta\rho) \right|_{s}^{t+1} \\ (3) \quad \text{is m } x \vdash t > t \text{ or is realized}$$

$$\frac{\partial}{\partial t}(\Delta\rho) + \frac{1}{\Delta x} |\Delta\rho u|^{t+1} + \frac{1}{\Delta y} |\Delta\rho v|^{t+1} + \frac{1}{\Delta z} [\Delta\rho w]_{t+1}$$
$$= \frac{1}{\Delta x} \left| K_s \frac{\partial}{\partial x} (\Delta\rho) \right|_{t}^{t+1} + \frac{1}{\Delta y} \left| K_s \frac{\partial}{\partial y} (\Delta\rho) \right|_{t}^{t+1} + \frac{1}{\Delta z} \left| K_s \frac{\partial}{\partial z} (\Delta\rho) \right|_{t}^{t+1}$$

(1)~(6)式において、
u,v,w:x,y,z方向の速度成分
Kh,Kv:水面面、円直面方向の移流分散係数
H:水位(基準面より水面までの高さ)
C:物質濃度(濁度)
Dh,Dv:物質濃度に関する水平、
鉛直面方向の移流分散係数
h:水深
Ah,Av:水平面(x,y軸)、鉛直面方向の
移流粘性係数
g:重力の加速度
Wx,Wy,Wz:水表面における x,y,z方向の
風速成分

- (3) 水温収支の式
 - ① 木表面エレメントの水温収支式 $\frac{\partial T}{\partial t} + \frac{1}{\Delta x} |Tu|_{t}^{t+1} + \frac{1}{\Delta y} |Tv|_{t}^{t+1} - \frac{1}{\Delta z} [Tw]_{s-t}$ $= \left|\frac{H}{\rho C_{w}}\right| + \frac{1}{\Delta x} \left|K_{s}\frac{\partial T}{\partial x}\right|_{t}^{t+1} + \frac{1}{\Delta y} \left|K_{s}\frac{\partial T}{\partial y}\right|_{t}^{t+1} + \frac{1}{\Delta z} \left|K_{s}\frac{\partial T}{\partial z}\right|_{s-1}^{s}$ ② 中間層エレメントの水温収支式 $\frac{\partial T}{\partial t} + \frac{1}{\Delta x} |Tu|_{t}^{t+1} + \frac{1}{\Delta y} |Tv|_{t}^{s+1} + \frac{1}{\Delta z} |Tw|_{s}^{s+1}$ $= \left|\frac{H}{\rho C_{w}}\right| + \frac{1}{\Delta x} \left|K_{s}\frac{\partial T}{\partial x}\right|_{t}^{t+1} + \frac{1}{\Delta y} \left|K_{s}\frac{\partial T}{\partial y}\right|_{t}^{t+1} + \frac{1}{\Delta z} \left|K_{s}\frac{\partial T}{\partial z}\right|_{s}^{s+1}$ ③ 底面エレメントの水温収支式 $\frac{\partial T}{\partial t} + \frac{1}{\Delta x} |Tv|_{t}^{t+1} + \frac{1}{\Delta x} |Tv|_{s}^{t+1} + \frac{1}{\Delta y} |K_{s}\frac{\partial T}{\partial y}|_{t}^{t+1} + \frac{1}{\Delta z} |K_{s}\frac{\partial T}{\partial z}|_{s}^{s+1}$

$$\frac{\partial t}{\partial x} + \Delta x \left[\frac{1}{\Delta x} + \frac{1}{\Delta x} \right] K_{h} \frac{\partial T}{\partial x} \Big|_{t}^{t+1} + \frac{1}{\Delta y} \left[K_{h} \frac{\partial T}{\partial y} \right]_{t}^{t+1} + \frac{1}{\Delta z} \left[K_{\theta} \frac{\partial T}{\partial z} \right]_{h+1}$$

- (4)物質濃度の収支式
 - ① 水表面エレメントの物質濃度の取支式 $\frac{\partial C}{\partial t} + \frac{1}{\Delta x} |Cu|_{t}^{t+1} + \frac{1}{\Delta y} |Cv|_{t}^{t+1} - \frac{1}{\Delta z} [Cw]_{s-1}$ $= \left| \frac{0}{S} \right| + \frac{1}{\Delta x} \left| D_{h} \frac{\partial C}{\partial x} \right|_{t}^{t+1} + \frac{1}{\Delta y} \left| D_{h} \frac{\partial C}{\partial y} \right|_{t}^{t+1} + \frac{1}{\Delta z} \left| D_{v} \frac{\partial C}{\partial z} \right|_{s-1}^{s}$ ② 中國層エレメントの取支式
 - $\frac{\partial C}{\partial t} + \frac{1}{\Delta x} |Cu|^{t+1} + \frac{1}{\Delta y} |Cv|^{t+1} + \frac{1}{\Delta z} |Cw|^{t+1} = \left| \frac{0}{S} \right| + \frac{1}{\Delta x} |D_{h} \frac{\partial C}{\partial x}|^{t+1} + \frac{1}{\Delta y} |D_{h} \frac{\partial C}{\partial y}|^{t+1} + \frac{1}{\Delta z} |D_{v} \frac{\partial C}{\partial z}|^{t+1}_{k}$
 - ③ 底面エレメントの収支式

$$\frac{\partial C}{\partial t} + \frac{1}{\Delta x} |C_W|_{t}^{t+1} + \frac{1}{\Delta y} |C_V|_{t}^{t+1} + \frac{1}{\Delta z} [C_W]_{h+1}$$
$$= \left| \frac{0}{S} \right| + \frac{1}{\Delta x} \left| D_h \frac{\partial C}{\partial x} \right|_{t}^{t+1} + \frac{1}{\Delta y} \left| D_h \frac{\partial C}{\partial y} \right|_{t}^{t+1} + \frac{1}{\Delta z} \left| D_e \frac{\partial C}{\partial z} \right|_{h}^{t+1}$$

- (5) 運動方程式のx方向分値
 - ① 木表面エレメントの エー方向分値式

$$\begin{split} \frac{\partial u}{\partial t} &+ \frac{1}{\Delta x} \| uu \|_{t}^{t+1} + \frac{1}{\Delta y} \| uv \|_{t}^{t+1} - \frac{1}{\Delta z} [uw]_{s-1} \\ &= \| fv \| - \frac{\|\Omega_{h}\|_{t}^{t+1}}{\Delta x} - g \frac{\|h\|_{t}^{t+1}}{\Delta x} + \frac{1}{\Delta x} \|A_{h} \frac{\partial u}{\partial x}\|_{t}^{t+1} + \frac{1}{\Delta y} \|A_{h} \frac{\partial u}{\partial y}\|_{t}^{t+1} \\ &+ \frac{1}{\Delta z} \gamma_{s}^{2} \frac{\rho_{s}}{\rho_{b}} W_{s} \sqrt{W_{s}^{2} + W_{s}^{2}} - \frac{1}{\Delta z} \Big[A_{v} \frac{\partial u}{\partial z} \Big]_{s-1} \end{split}$$

② 中間層エレメントの x-方向分値式 $\frac{\partial u}{\partial t} + \frac{1}{\Delta x} |uu|_{t}^{t+1} + \frac{1}{\Delta y} |uv|_{t}^{t+1} + \frac{1}{\Delta z} |uw|_{s}^{s+1} = |fv| + gi_{x}$ $-g \frac{|h|_{t}^{t+1}}{\Delta x} + \frac{1}{\Delta x} |A_{s} \frac{\partial u}{\partial x}|_{t}^{t+1} + \frac{1}{\Delta y} |A_{s} \frac{\partial u}{\partial y}|_{t}^{t+1} + \frac{1}{\Delta z} |A_{s} \frac{\partial u}{\partial z}|_{s}^{s+1}$

③ 底面エレメントの x-方向分値式

$$\frac{\partial u}{\partial t} + \frac{1}{\Delta x} |uu|_{t}^{t+1} + \frac{1}{\Delta y} |uv|_{t}^{t+1} + \frac{1}{\Delta z} [uw]_{s+1} = |fv| + gi_{x} - g\frac{|h|_{t}^{t+1}}{\Delta x}$$

$$+ \frac{1}{\Delta x} |A_{h}\frac{\partial u}{\partial x}|_{t}^{t+1} + \frac{1}{\Delta y} |A_{h}\frac{\partial u}{\partial y}|_{t}^{t+1} + \frac{1}{\Delta z} [A_{s}\frac{\partial u}{\partial z}]_{s+1} - \frac{1}{\Delta z}\frac{\tau_{bx}}{\rho_{0}}$$
ここに、
$$\frac{\tau_{bx}}{\rho_{0}} = \frac{gn^{2}u_{b}\sqrt{u_{b}^{2} + v_{b}^{2}}}{h^{13}}$$
と書きうる、

(6) 運動方程式の y 方向分値

① 水表面エレメントのy-方向分位式 $\frac{\partial v}{\partial t} + \frac{1}{\Delta x} |uv|^{s+1} + \frac{1}{\Delta y} |vv|^{s+1} - \frac{1}{\Delta z} [vw]_{s-1}$ $= |-fu| + gi_y - g \frac{|h|^{s+1}}{\Delta y} + \frac{1}{\Delta x} |A_h \frac{\partial v}{\partial x}|^{s+1}_{t} + \frac{1}{\Delta y} |A_h \frac{\partial v}{\partial y}|^{s+1}_{t}$

$$+\frac{1}{\Delta z}\gamma_e^z\frac{\rho_e}{\rho_0}W_y\sqrt{W_x^2+W_y^2}-\frac{1}{\Delta z}\Big[A_v\frac{\partial v}{\partial z}\Big]_{s-1}$$

 $\mathbb{LC}_{i}^{1},-|\Omega_{a}|_{i}^{j+1}/\Delta y=gi_{s}\geq \mathbb{L}_{i}^{1}\nabla \delta.$

② 中間層エレメントの y-方向分値式

$$\begin{aligned} \frac{\partial v}{\partial t} &+ \frac{1}{\Delta x} | uv |_{t}^{t+1} + \frac{1}{\Delta y} | vv |_{t}^{t+1} + \frac{1}{\Delta z} | vw |_{s}^{t+1} \\ &= | -fu | + gi_{x} - g \frac{|h|_{t}^{t+1}}{\Delta y} + \frac{1}{\Delta x} \left| A_{s} \frac{\partial v}{\partial x} \right|_{t}^{t+1} + \frac{1}{\Delta y} \left| A_{s} \frac{\partial v}{\partial y} \right|_{t}^{t+1} \\ &+ \frac{1}{\Delta z} \left| A_{v} \frac{\partial v}{\partial z} \right|_{s}^{s+1} \end{aligned}$$

③ 底面エレメントの y-方向分値式

$$\begin{split} \frac{\partial v}{\partial t} &+ \frac{1}{\Delta x} | uv |_{t}^{t+1} + \frac{1}{\Delta y} | vv |_{t}^{t+1} + \frac{1}{\Delta z} [vw]_{s+1} \\ &= | -fu | + gi_y - g \frac{|h|_{t}^{t+1}}{\Delta y} + \frac{1}{\Delta x} | A_s \frac{\partial v}{\partial x} |_{t}^{t+1} + \frac{1}{\Delta y} | A_s \frac{\partial v}{\partial y} |_{t}^{t+1} \\ &+ \frac{1}{\Delta z} \Big[A_s \frac{\partial v}{\partial z} \Big]_{s+1} - \frac{1}{\Delta z} \frac{r_{by}}{\rho_0} \end{split}$$

また、水面等における熱収支の考え方は、MITの貯水池水温表現モデルの考え方を踏 襲し、図-2に示すとおりである。

水面での熱交換は、次の成分から算出。
①全天日射量 Qo:日射による短波放射量+長波放射量
②潜熱交換量 Qe:蒸発による熱損失
③顕熱交換量 Qc:「大気-水面」間の伝導による熱交換

大気から水体に供給される熱エネルギー Qtは、次式で表される。 Qt=Qo+Qc+Qe

土面から水体に供給される熱エネルギーをQsとすると、 水体における熱交換量は、Qt+Qs となる。

図-2 水面、土面における熱交換

(1) 全天日射量 Qo=①+②+③

①日射による短波長輻射: ϕ (KJ/m²/h_r)

 $\phi_0 = (1 - \alpha)\phi_s$

ここに、αは表層吸収率(0.5)、**φ**_sは日射量である。 ②長波長成分による大気輻射:**φ**_{ss}

 $\phi_{rw} = 0.97 \cdot k \cdot T_w^4$

ここに、kはStefan-Boltzman定数(5.67×10⁻⁸Wm⁻²K⁻⁴)、 T_w は水温である。 ③大気から長波逆放射: ϕ_a

$$\phi_a = 0.937 \times 10^{-5} kT_a^6 (1.0 + 0.17c^2)$$

ここに、 T_a は気温、cは雲量である。

(2) 潜熱交換量 Qe + 顕熱交換量 Qc

$$Q_e + Q_c = \rho(a + b \cdot W) \cdot (e_s - \psi \cdot e_a) \left(L_v + c \cdot T_s + N \frac{(T_s - T_a)}{(e_s - \psi \cdot e_a)} \right)$$

ここに、

密度ρ:水の密度(1 g/cm³) 実験定数a:0.000308 m/day/mmHg 実験定数b:0.000185 sec/day/mmHg 飽和蒸気圧e:温度より求められる数値 (添字sとaはそれぞれ水表面及び空気に対応)

蒸発潜熱Lv:水の蒸発潜熱 (2,256 kJ/kg)

比熱 c:水の比熱(4.217)

定数N:269.1 kcal·mmHg/kg/℃

水温Ts:予測計算で計算される水温(初期値:放熱時30℃、採熱時7℃) (3) 土面から水体へ供給される熱エネルギー Qs

 $Q_s = \lambda (T_w - T_s)$

ここに、土の熱抵抗λ:80

土面温度Tw:予測計算で計算される水底温度(初期値:放熱時30℃、採熱時7℃) 土中温度Ts:放熱時:23.3℃、採熱時:9.9℃とした。

(「日本の標準気象データ(名古屋(ナゴヤ))」より設定)

気温、日射量、雲量、風速、相対湿度は、夏(放熱時)と冬(採熱時)の代表的な1日 のデータとして、名古屋地方気象台における観測データのうち、夏の晴れた1日、冬の晴 れた1日を代表として、夏(放熱時:2012年8月5日)、冬(採熱時:2012年1月7日)を参 考に以下のとおり設定した。

なお、気温を例に、設定した気温データと夏(2013年8月の時刻別平均気温)、冬(2013 年1月の時刻別平均気温)を比較すると、1日の気温の時刻変化は概ね一致する。

○気 温(℃)

時 刻	1	2	3	4	5	6	7	8	9	10	11	12
放熱時	27.6	27.1	27.0	26.9	26.7	27.2	28.2	29.6	30.8	31.1	33.0	34.7
採熱時	2.8	2.4	1.9	1.9	1.8	1.1	1.1	2.2	4.2	6.3	7.0	8.1
時 刻	13	14	15	16	17	18	19	20	21	22	23	24
放熱時	34.2	33.6	33.6	32.6	31.4	30.2	29.2	28.5	28.1	27.9	27.9	27.8
採熱時	8.4	7.4	6.8	5.6	4.9	4.2	3.9	3.3	2.7	2.3	2.1	1.8

○日射量(MJ/㎡)

時 刻	1	2	3	4	5	6	7	8	9	10	11	12
放熱時	0	0	0	0	0	0.2	0.7	1.4	1.9	2.1	2.4	3.1
採熱時	0	0	0	0	0	0	0	0.2	0.8	1.4	1.8	2.0
時 刻	13	14	15	16	17	18	19	20	21	22	23	24
放熱時	3.2	2.5	2.1	1.9	1.3	0.4	0.1	0	0	0	0	0
採熱時	2.1	1.8	1.2	0.7	0	0	0	0	0	0	0	0

○雲 量

時 刻	1	2	3	4	5	6	7	8	9	10	11	12
放熱時	2	2	2	3	3	4	4	4	4	5	7	8
採熱時	2	2	2	1	1	0	0	0	0	1	2	3
時 刻	13	14	15	16	17	18	19	20	21	22	23	24
放熱時	8	7	7	6	6	5	6	8	9	9	9	9
採熱時	3	2	2	2	1	1	1	1	1	1	1	1

○風速(m/s)

時 刻	1	2	3	4	5	6	7	8	9	10	11	12
放熱時	2.0	2.2	1.6	1.3	2.0	1.5	2.6	1.2	2.6	2.8	4.0	4.3
採熱時	3.2	2.1	3.0	2.0	2.3	2.7	2.4	3.2	2.7	3.0	5.8	7.4
時刻	13	14	15	16	17	18	19	20	21	22	23	24
時刻 放熱時	13 4.1	14 4.8	15 5.4	16 6.4	17 7.0	18 5.1	19 5.4	20 3.7	21 3.5	22 3.9	23 3.6	24 2.4

○相対湿度(%)

時 刻	1	2	3	4	5	6	7	8	9	10	11	12
放熱時	74	74	74	75	78	79	74	68	62	59	51	50
採熱時	88	89	88	85	81	82	80	75	65	51	38	34
時刻	13	14	15	16	17	18	19	20	21	22	23	24
放熱時	53	52	54	56	61	64	67	72	76	76	77	78
採熱時	34	36	37	42	42	47	49	54	55	59	61	62

資料7-8 熱源施設の運河水循環による温度差利用に伴う運河水への影響

[本編 p. 397 参照]

水深1.0m水温予測平面図の経時変化

資料7-9 底泥舞い上がりに係る流速と底泥の含水比の関係

[本編 p. 408 参照]

底泥の舞い上がりが発生する速度について、霞ヶ浦の底泥の実験的研究において、流速 と底泥の含水比の関係から、底泥の洗掘(舞い上がり)の有無の検討がなされている(図 -1参照)。

名古屋市の公共用水域重金属等調査における中川運河(東海橋)での底質の含水比 30.2 ~446.4%(名古屋市環境局から聞き取り調査した含水率データから含水比を算出:表-1 参照)を、上記研究結果に照らした場合、本事業の取水・放水流速 0.20m/s は、洗掘(舞い 上がり)は生じない流速に分類される。

表-1 中川運河 (東海橋)での底質の含水比

調査年度	1998 年	1999 年	2000年	2001 年	2002 年	2004 年	2008 年	2012 年
含水率(%)	62.7	58.8	52.0	81.6	81.7	46.4	36.4	23.2
含水比(%)	168.1	142.7	108.3	443.5	446.4	86.6	57.2	30.2

注) 名古屋市の公共用水域重金属等調査(名古屋市環境局より聞き取り)の含水率データから含水比 を算定。含水比(%)=[含水率(%)]÷(100-[含水率(%)])×100

図-1 底泥の舞い上がりに係る流速と底泥の含水比の関係

出典:「霞ヶ浦底泥の洗掘過程に関する実験的研究」(土木学会論文集 No.740/Ⅱ-64,63-73,2003.8)